快速傅里叶变换
前置知识:复数。
本文将介绍一种算法,它支持在
的时间内计算两个
度的多项式的乘法,比朴素的
算法更高效。由于两个整数的乘法也可以被当作多项式乘法,因此这个算法也可以用来加速大整数的乘法计算。
引入
我们现在引入两个多项式
和
:

两个多项式相乘的积
,我们可以在
的时间复杂度中解得(这里
为
或者
多项式的度):

很明显,多项式
的系数
满足
。而对于这种朴素算法而言,计算每一项的时间复杂度都为
,一共有
项,那么时间复杂度为
。
能否加速使得它的时间复杂度降低呢?如果使用快速傅里叶变换的话,那么我们可以使得其复杂度降低到
。
傅里叶变换
傅里叶变换(Fourier Transform)是一种分析信号的方法,它可分析信号的成分,也可用这些成分合成信号。许多波形可作为信号的成分,傅里叶变换用正弦波作为信号的成分。
设
是关于时间
的函数,则傅里叶变换可以检测频率
的周期在
出现的程度:
![F(\omega)=\mathbb{F}[f(t)]=\int_{-\infty}^{\infty}f(t)\mathrm{e}^{-\mathrm{i}{\omega}t}dt]()
它的逆变换是
![f(t)=\mathbb{F}^{-1}[F(\omega)]=\frac{1}{2\pi}\int_{-\infty}^{\infty}F(\omega)\mathrm{e}^{\mathrm{i}{\omega}t}d\omega]()
逆变换的形式与正变换非常类似,分母
恰好是指数函数的周期。
傅里叶变换相当于将时域的函数与周期为
的复指数函数进行连续的内积。逆变换仍旧为一个内积。
傅里叶变换有相应的卷积定理,可以将时域的卷积转化为频域的乘积,也可以将频域的卷积转化为时域的乘积。
离散傅里叶变换
离散傅里叶变换(Discrete Fourier transform,DFT)是傅里叶变换在时域和频域上都呈离散的形式,将信号的时域采样变换为其 DTFT(discrete-time Fourier transform)的频域采样。
傅里叶变换是积分形式的连续的函数内积,离散傅里叶变换是求和形式的内积。
设
是某一满足有限性条件的序列,它的离散傅里叶变换(DFT)为:

其中
是自然对数的底数,
是虚数单位。通常以符号
表示这一变换,即

类似于积分形式,它的 逆离散傅里叶变换(IDFT)为:

可以记为:

实际上,DFT 和 IDFT 变换式中和式前面的归一化系数并不重要。在上面的定义中,DFT 和 IDFT 前的系数分别为
和
。有时我们会将这两个系数都改
。
离散傅里叶变换仍旧是时域到频域的变换。由于求和形式的特殊性,可以有其他的解释方法。
如果把序列
看作多项式
的
项系数,则计算得到的
恰好是多项式
代入单位根
的点值
。
这便构成了卷积定理的另一种解释办法,即对多项式进行特殊的插值操作。离散傅里叶变换恰好是多项式在单位根处进行插值。
例如计算:

定义函数
为:

然后可以发现,代入四次单位根
得到这样的序列:

于是下面的求和恰好可以把其余各项消掉:

因此这道数学题的答案为:

这道数学题在单位根处插值,恰好构成离散傅里叶变换。
矩阵公式
由于离散傅立叶变换是一个 线性 算子,所以它可以用矩阵乘法来描述。在矩阵表示法中,离散傅立叶变换表示如下:

其中
。
快速傅里叶变换
FFT 是一种高效实现 DFT 的算法,称为快速傅立叶变换(Fast Fourier Transform,FFT)。它对傅里叶变换的理论并没有新的发现,但是对于在计算机系统或者说数字系统中应用离散傅立叶变换,可以说是进了一大步。快速数论变换(NTT)是快速傅里叶变换(FFT)在数论基础上的实现。
在 1965 年,Cooley 和 Tukey 发表了快速傅里叶变换算法。事实上 FFT 早在这之前就被发现过了,但是在当时现代计算机并未问世,人们没有意识到 FFT 的重要性。一些调查者认为 FFT 是由 Runge 和 König 在 1924 年发现的。但事实上高斯早在 1805 年就发明了这个算法,但一直没有发表。
分治法实现
FFT 算法的基本思想是分治。就 DFT 来说,它分治地来求当
的时候
的值。基 - 2 FFT 的分治思想体现在将多项式分为奇次项和偶次项处理。
举个例子,对于一共
项的多项式:

按照次数的奇偶来分成两组,然后右边提出来一个
:

分别用奇偶次次项数建立新的函数:

那么原来的
用新函数表示为:

利用偶数次单位根的性质
,和
和
是偶函数,我们知道在复平面上
和
的
的
对应的值相同。得到:

和:

因此我们求出了
和
后,就可以同时求出
和
。于是对
和
分别递归 DFT 即可。
考虑到分治 DFT 能处理的多项式长度只能是
,否则在分治的时候左右不一样长,右边就取不到系数了。所以要在第一次 DFT 之前就把序列向上补成长度为
(高次系数补
)、最高项次数为
的多项式。
在代入值的时候,因为要代入
个不同值,所以我们代入
一共
个不同值。
代码实现方面,STL 提供了复数的模板,当然也可以手动实现。两者区别在于,使用 STL 的 complex
可以调用 exp
函数求出
。但事实上使用欧拉公式得到的虚数来求
也是等价的。
以上就是 FFT 算法中 DFT 的介绍,它将一个多项式从系数表示法变成了点值表示法。
值的注意的是,因为是单位复根,所以说我们需要令
项式的高位补为零,使得
。
递归版 FFT
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37 | #include <cmath>
#include <complex>
typedef std::complex<double> Comp; // STL complex
const Comp I(0, 1); // i
const int MAX_N = 1 << 20;
Comp tmp[MAX_N];
// rev=1,DFT; rev=-1,IDFT
void DFT(Comp* f, int n, int rev) {
if (n == 1) return;
for (int i = 0; i < n; ++i) tmp[i] = f[i];
// 偶数放左边,奇数放右边
for (int i = 0; i < n; ++i) {
if (i & 1)
f[n / 2 + i / 2] = tmp[i];
else
f[i / 2] = tmp[i];
}
Comp *g = f, *h = f + n / 2;
// 递归 DFT
DFT(g, n / 2, rev), DFT(h, n / 2, rev);
// cur 是当前单位复根,对于 k = 0 而言,它对应的单位复根 omega^0_n = 1。
// step 是两个单位复根的差,即满足 omega^k_n = step*omega^{k-1}*n,
// 定义等价于 exp(I*(2*M_PI/n*rev))
Comp cur(1, 0), step(cos(2 * M_PI / n), sin(2 * M_PI * rev / n));
for (int k = 0; k < n / 2;
++k) { // F(omega^k_n) = G(omega^k*{n/2}) + omega^k*n\*H(omega^k*{n/2})
tmp[k] = g[k] + cur * h[k];
// F(omega^{k+n/2}*n) = G(omega^k*{n/2}) - omega^k_n*H(omega^k\_{n/2})
tmp[k + n / 2] = g[k] - cur * h[k];
cur *= step;
}
for (int i = 0; i < n; ++i) f[i] = tmp[i];
}
|
时间复杂度
。
倍增法实现
这个算法还可以从「分治」的角度继续优化。对于基 - 2 FFT,我们每一次都会把整个多项式的奇数次项和偶数次项系数分开,一直分到只剩下一个系数。但是,这个递归的过程需要更多的内存。因此,我们可以先「模仿递归」把这些系数在原数组中「拆分」,然后再「倍增」地去合并这些算出来的值。
对于「拆分」,可以使用位逆序置换实现。
对于「合并」,使用蝶形运算优化可以做到只用
的额外空间来完成。
位逆序置换
以
项多项式为例,模拟拆分的过程:
- 初始序列为

- 一次二分之后

- 两次二分之后

- 三次二分之后

规律:其实就是原来的那个序列,每个数用二进制表示,然后把二进制翻转对称一下,就是最终那个位置的下标。比如
是 001,翻转是 100,也就是 4,而且最后那个位置确实是 4。我们称这个变换为位逆序置换(bit-reversal permutation),证明留给读者自证。
根据它的定义,我们可以在
的时间内求出每个数变换后的结果:
位逆序置换实现(
)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22 | /*
* 进行 FFT 和 IFFT 前的反置变换
* 位置 i 和 i 的二进制反转后的位置互换
* len 必须为 2 的幂
*/
void change(Complex y[], int len) {
// 一开始 i 是 0...01,而 j 是 10...0,在二进制下相反对称。
// 之后 i 逐渐加一,而 j 依然维持着和 i 相反对称,一直到 i = 1...11。
for (int i = 1, j = len / 2, k; i < len - 1; i++) {
// 交换互为小标反转的元素,i < j 保证交换一次
if (i < j) swap(y[i], y[j]);
// i 做正常的 + 1,j 做反转类型的 + 1,始终保持 i 和 j 是反转的。
// 这里 k 代表了 0 出现的最高位。j 先减去高位的全为 1 的数字,知道遇到了
// 0,之后再加上即可。
k = len / 2;
while (j >= k) {
j = j - k;
k = k / 2;
}
if (j < k) j += k;
}
}
|
实际上,位逆序置换可以
从小到大递推实现,设
,其中
表示二进制数的长度,设
表示长度为
的二进制数
翻转后的数(高位补
)。我们要求的是
。
首先
。
我们从小到大求
。因此在求
时,
的值是已知的。因此我们把
右移一位(除以
),然后翻转,再右移一位,就得到了
除了(二进制)个位 之外其它位的翻转结果。
考虑个位的翻转结果:如果个位是
,翻转之后最高位就是
。如果个位是
,则翻转后最高位是
,因此还要加上
。综上

举个例子:设
,
。为了翻转
:
- 考虑
,我们知道
,再右移一位就得到了
。 - 考虑个位,如果是
,它就要翻转到数的最高位,即翻转数加上
,如果是
则不用更改。
位逆序置换实现(
)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16 | // 同样需要保证 len 是 2 的幂
// 记 rev[i] 为 i 翻转后的值
void change(Complex y[], int len) {
for (int i = 0; i < len; ++i) {
rev[i] = rev[i >> 1] >> 1;
if (i & 1) { // 如果最后一位是 1,则翻转成 len/2
rev[i] |= len >> 1;
}
}
for (int i = 0; i < len; ++i) {
if (i < rev[i]) { // 保证每对数只翻转一次
swap(y[i], y[rev[i]]);
}
}
return;
}
|
蝶形运算优化
已知
和
后,需要使用下面两个式子求出
和
:

使用位逆序置换后,对于给定的
:
的值存储在数组下标为
的位置,
的值存储在数组下标为
的位置。
的值将存储在数组下标为
的位置,
的值将存储在数组下标为
的位置。
因此可以直接在数组下标为
和
的位置进行覆写,而不用开额外的数组保存值。此方法即称为 蝶形运算,或更准确的,基 - 2 蝶形运算。
再详细说明一下如何借助蝶形运算完成所有段长度为
的合并操作:
- 令段长度为
; - 同时枚举序列
的左端点
和序列
的左端点
; - 合并两个段时,枚举
,此时
存储在数组下标为
的位置,
存储在数组下标为
的位置; - 使用蝶形运算求出
和
,然后直接在原位置覆写。
快速傅里叶逆变换
傅里叶逆变换可以用傅里叶变换表示。对此我们有两种理解方式。
线性代数角度
IDFT(傅里叶反变换)的作用,是把目标多项式的点值形式转换成系数形式。而 DFT 本身是个线性变换,可以理解为将目标多项式当作向量,左乘一个矩阵得到变换后的向量,以模拟把单位复根代入多项式的过程:

现在我们已经得到最左边的结果了,中间的
值在目标多项式的点值表示中也是一一对应的,所以,根据矩阵的基础知识,我们只要在式子两边左乘中间那个大矩阵的逆矩阵就行了。
由于这个矩阵的元素非常特殊,它的逆矩阵也有特殊的性质,就是每一项 取倒数,再 除以变换的长度
,就能得到它的逆矩阵。
注意:傅里叶变换的长度,并不是多项式的长度,变换的长度应比乘积多项式的长度长。待相乘的多项式不够长,需要在高次项处补
。
为了使计算的结果为原来的倒数,根据欧拉公式,可以得到

因此我们可以尝试着把单位根
取成
,这样我们的计算结果就会变成原来的倒数,之后唯一多的操作就只有再 除以它的长度
,而其它的操作过程与 DFT 是完全相同的。我们可以定义一个函数,在里面加一个参数
或者是
,然后把它乘到
上。传入
就是 DFT,传入
就是 IDFT。
单位复根周期性
利用单位复根的周期性同样可以理解 IDFT 与 DFT 之间的关系。
考虑原本的多项式是
。而 IDFT 就是把你的点值表示还原为系数表示。
考虑 构造法。我们已知
,求
。构造多项式如下

相当于把
当做多项式
的系数表示法。
这时我们有两种推导方式,这对应了两种实现方法。
方法一
设
,则多项式
在
处的点值表示法为
。
对
的定义式做一下变换,可以将
表示为

记
。
当
时,
。
当
时,我们错位相减

也就是说

那么代回原式

也就是说给定点
,则
的点值表示法为

综上所述,我们取单位根为其倒数,对
跑一遍 FFT,然后除以
即可得到
的系数表示。
方法二
我们直接将
代入
。
推导的过程与方法一大同小异,最终我们得到
。
当且仅当
时有
,否则为
。因此
。
这意味着我们将
做 DFT 变换后除以
,再反转后
个元素,同样可以还原
的系数表示。
代码实现
所以我们 FFT 函数可以集 DFT 和 IDFT 于一身。代码实现如下:
非递归版 FFT(对应方法一)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38 | /*
* 做 FFT
* len 必须是 2^k 形式
* on == 1 时是 DFT,on == -1 时是 IDFT
*/
void fft(Complex y[], int len, int on) {
// 位逆序置换
change(y, len);
// 模拟合并过程,一开始,从长度为一合并到长度为二,一直合并到长度为 len。
for (int h = 2; h <= len; h <<= 1) {
// wn:当前单位复根的间隔:w^1_h
Complex wn(cos(2 * PI / h), sin(on * 2 * PI / h));
// 合并,共 len / h 次。
for (int j = 0; j < len; j += h) {
// 计算当前单位复根,一开始是 1 = w^0_n,之后是以 wn 为间隔递增: w^1_n
// ...
Complex w(1, 0);
for (int k = j; k < j + h / 2; k++) {
// 左侧部分和右侧是子问题的解
Complex u = y[k];
Complex t = w * y[k + h / 2];
// 这就是把两部分分治的结果加起来
y[k] = u + t;
y[k + h / 2] = u - t;
// 后半个 「step」 中的ω一定和 「前半个」 中的成相反数
// 「红圈」上的点转一整圈「转回来」,转半圈正好转成相反数
// 一个数相反数的平方与这个数自身的平方相等
w = w * wn;
}
}
}
// 如果是 IDFT,它的逆矩阵的每一个元素不只是原元素取倒数,还要除以长度 len。
if (on == -1) {
for (int i = 0; i < len; i++) {
y[i].x /= len;
}
}
}
|
非递归版 FFT(对应方法二)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30 | /*
* 做 FFT
* len 必须是 2^k 形式
* on == 1 时是 DFT,on == -1 时是 IDFT
*/
void fft(Complex y[], int len, int on) {
change(y, len);
for (int h = 2; h <= len; h <<= 1) { // 模拟合并过程
Complex wn(cos(2 * PI / h), sin(2 * PI / h)); // 计算当前单位复根
for (int j = 0; j < len; j += h) {
Complex w(1, 0); // 计算当前单位复根
for (int k = j; k < j + h / 2; k++) {
Complex u = y[k];
Complex t = w * y[k + h / 2];
y[k] = u + t; // 这就是把两部分分治的结果加起来
y[k + h / 2] = u - t;
// 后半个 「step」 中的ω一定和 「前半个」 中的成相反数
// 「红圈」上的点转一整圈「转回来」,转半圈正好转成相反数
// 一个数相反数的平方与这个数自身的平方相等
w = w * wn;
}
}
}
if (on == -1) {
reverse(y + 1, y + len);
for (int i = 0; i < len; i++) {
y[i].x /= len;
}
}
}
|
FFT 模板(HDU 1402 - A * B Problem Plus)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129 | #include <cmath>
#include <cstdio>
#include <cstring>
#include <iostream>
const double PI = acos(-1.0);
struct Complex {
double x, y;
Complex(double _x = 0.0, double _y = 0.0) {
x = _x;
y = _y;
}
Complex operator-(const Complex &b) const {
return Complex(x - b.x, y - b.y);
}
Complex operator+(const Complex &b) const {
return Complex(x + b.x, y + b.y);
}
Complex operator*(const Complex &b) const {
return Complex(x * b.x - y * b.y, x * b.y + y * b.x);
}
};
/*
* 进行 FFT 和 IFFT 前的反置变换
* 位置 i 和 i 的二进制反转后的位置互换
*len 必须为 2 的幂
*/
void change(Complex y[], int len) {
int i, j, k;
for (int i = 1, j = len / 2; i < len - 1; i++) {
if (i < j) std::swap(y[i], y[j]);
// 交换互为小标反转的元素,i<j 保证交换一次
// i 做正常的 + 1,j 做反转类型的 + 1,始终保持 i 和 j 是反转的
k = len / 2;
while (j >= k) {
j = j - k;
k = k / 2;
}
if (j < k) j += k;
}
}
/*
* 做 FFT
*len 必须是 2^k 形式
*on == 1 时是 DFT,on == -1 时是 IDFT
*/
void fft(Complex y[], int len, int on) {
change(y, len);
for (int h = 2; h <= len; h <<= 1) {
Complex wn(cos(2 * PI / h), sin(on * 2 * PI / h));
for (int j = 0; j < len; j += h) {
Complex w(1, 0);
for (int k = j; k < j + h / 2; k++) {
Complex u = y[k];
Complex t = w * y[k + h / 2];
y[k] = u + t;
y[k + h / 2] = u - t;
w = w * wn;
}
}
}
if (on == -1) {
for (int i = 0; i < len; i++) {
y[i].x /= len;
}
}
}
const int MAXN = 200020;
Complex x1[MAXN], x2[MAXN];
char str1[MAXN / 2], str2[MAXN / 2];
int sum[MAXN];
int main() {
while (scanf("%s%s", str1, str2) == 2) {
int len1 = strlen(str1);
int len2 = strlen(str2);
int len = 1;
while (len < len1 * 2 || len < len2 * 2) len <<= 1;
for (int i = 0; i < len1; i++) x1[i] = Complex(str1[len1 - 1 - i] - '0', 0);
for (int i = len1; i < len; i++) x1[i] = Complex(0, 0);
for (int i = 0; i < len2; i++) x2[i] = Complex(str2[len2 - 1 - i] - '0', 0);
for (int i = len2; i < len; i++) x2[i] = Complex(0, 0);
fft(x1, len, 1);
fft(x2, len, 1);
for (int i = 0; i < len; i++) x1[i] = x1[i] * x2[i];
fft(x1, len, -1);
for (int i = 0; i < len; i++) sum[i] = int(x1[i].x + 0.5);
for (int i = 0; i < len; i++) {
sum[i + 1] += sum[i] / 10;
sum[i] %= 10;
}
len = len1 + len2 - 1;
while (sum[len] == 0 && len > 0) len--;
for (int i = len; i >= 0; i--) printf("%c", sum[i] + '0');
printf("\n");
}
return 0;
}
|
参考文献
- 桃酱的算法笔记.
本页面最近更新:2023/9/6 09:43:19,更新历史
发现错误?想一起完善? 在 GitHub 上编辑此页!
本页面贡献者:H-J-Granger, ranwen, abc1763613206, Ahacad, Allenyou1126, AndrewWayne, AngelKitty, Backl1ght, billchenchina, CCXXXI, Chrogeek, ChungZH, countercurrent-time, DepletedPrism, Early0v0, EarthMessenger, Enter-tainer, F1shAndCat, GavinZhengOI, Gesrua, Great-designer, greyqz, Haohu Shen, henryrabbit, heroming, hly1204, Ir1d, isdanni, jiang1997, kenlig, Lewy Zeng, lucifer1004, Menci, muoshuosha, NachtgeistW, opsiff, ouuan, ouuan, partychicken, schtonn, Sshwy, sshwy, StudyingFather, SukkaW, Tiphereth-A, TrisolarisHD, untitledunrevised, Xeonacid, Yukimaikoriya
本页面的全部内容在 CC BY-SA 4.0 和 SATA 协议之条款下提供,附加条款亦可能应用